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Wave scattering from self-affine surfaces
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Electromagnetic wave scattering from a perfectly reflecting self-affine surface is considered. Within the
framework of the Kirchhoff approximation, we show that the scattering cross section can be exactly written as
a function of the scattering angle via a centered symmetric Le´vy distribution for the general roughness
amplitude, Hurst exponent and wavelength of the incident wave. Our prediction is supported by direct numeri-
cal simulations.

PACS number~s!: 42.25.Fx, 05.45.Df, 68.35.Ct
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Wave scattering from rough surfaces has been studied
a long time@1,2# ~see also@3–5# for recent reviews of the
subject! with potential applications in remote sensin
acoustical/optical/radar detection or design of surfaces w
specified scattering properties, etc. The theoretical predic
of the angular distribution of the scattered intensity requi
a proper statistical description of the surface roughness
this stage it is classical to assume that the statistics of
height and its correlation function are Gaussian. This
sumption allows us to build analytical expressions and
compare them with experimental or numerical results.

Since the pioneering work of Mandelbrot@6#, however,
scale invariance has emerged as a relevant tool to des
the geometry of real ‘‘disordered’’ objects. In the case
surfaces, the scale invariance takes the form of self-affin
Such surfaces remain invariant under dilation of differe
ratios over the horizontal and the vertical directions. T
long-range correlated height distribution is characterized
a roughness exponent, an amplitude parameter, and by
lower and upper limits of the scaling invariance region~in-
stead of a height standard deviation and a two-point corr
tion function of finite width!. It turns out that many rea
surfaces can be described through this formalism. Surfa
obtained from fracture@7#, growth, or deposition processe
@8# are classical examples. Similar results have been m
recently found for surfaces obtained from cold metal rolli
@9#.

Since an early paper examining the effect of scale inv
ance in the context of scattering from rough surfaces@10#, a
large amount of studies have been published in various j
nals~see, for example, Refs.@11–19#!. Two main points mo-
tivated most of these studies:~i! the effect of scale invarianc
on the field scattered from the surface in comparison with
more classical case of a finite width correlation length,~ii !
the hope of directly measuring the ‘‘fractal’’ parameters
the surface via an acoustical or optical experiment. In s
of a large amount of work, very few analytical predictio
can be found and conversely a large number of numer
simulations still lack a clear physical interpretation. One r
son for this could be an excessive focus on the ‘‘fractal
mension’’ ~or the roughness exponent! with a disregard for
the other parameters~the limits of the scale invariance re
gime and the amplitude parameter!. A noteworthy exception
is, however, due to Jakeman and his collaborators@20,21#,
PRE 611063-651X/2000/61~5!/5914~4!/$15.00
or

th
n
s
At
e

s-
o

ibe
f
y.
t
s
y

the

a-

es

re

i-

r-

e

f
te

al
-
-

who predicted a Le´vy distribution for the intensity of a wave
scattered from a self-affine random phase screen. In the
lowing, we briefly recall the main properties of self-affin
surfaces, give a complete analytic expression of the scatt
intensity in the framework of the Kirchhoff approximation
and present direct numerical simulation that supports
predictions.

A surface is self-affine between the scalesj2 andj1 if it
remains~either exactly or statistically! invariant in this re-
gion under transformations of the form

~x,y,z!→~lx,ly,lHz!. ~1!

The exponentH is usually called the roughness or Hur
exponent. Restricting ourselves to profiles, a statistical tra
lation of the previous statement is that the probabil
p(Dz;Dx) of having a height differenceDz over the distance
Dx or its cumulativeP(Dz;Dx)5*2`

Dz p(dz;Dx)ddz is such
that

P~Dz;Dx!5P~lHDz;lDx!5FS Dz

DxHD . ~2!

Simple algebra based on this scaling gives

s~Dx!5 l12HDxH, ~3!

wheres(Dx) is the standard deviation of the height diffe
ences over a lengthDx. Here l denotes a length scale, als
known as thetopothesy. This quantity is defined bys( l)5 l,
which allows the geometrical interpretation of the topothe
as the length scale over which the profile has a mean slop
45°. The smallerl, the flatter the profile appears on a ma
roscopic scale. In the case of a Gaussian height distribut
the probabilityp(Dz;Dx) reads

p~Dz;Dx!5
1

A2p l12HDxH
expF2

1

2 S Dz

l12HDxHD 2G . ~4!

The self-affine profile is thus fully characterized by its exp
nent H, its topothesy parameterl, and the bounds of the
self-affine regimej2 andj1 . Note thatl can be outside the
range@j2 ;j1#.
5914 ©2000 The American Physical Society
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In the following, we consider the scattering ofs-polarized
electromagnetic waves from a one-dimensional, rand
self-affine surface. This surface, of Hurst exponentH, is de-
noted byz5z(x), and is assumed to be Gaussian self-affi
We will further assume that the lower limit of the self-affin
regimej2 is smaller than the wavelength,l, of the incident
wave. The scattering geometry considered is depicted in
1. The incident plane is assumed to be thexz-plane, and the
rough surface, which is perfectly conducting, is illuminat
from the vacuum side by a plane wave of pulsationv
52pc/l, wherec is the wave velocity. We denote the inc
dent and scattering angle byu0 andu, respectively, and they
are defined positive according to the convention indicated
Fig. 1. In the above scattering geometry, there is no depo
ization, and the electromagnetic field is represented by
single nonvanishing component of the electric fie
F(x,zuv)5Ey(x,zuv), which should satisfy the~scalar!
Helmholtz equation with vanishing boundary condition
z5z(x) and outgoing wave condition at infinity. In the fa
field region, above the surface, the field can be represente
the sum of an incident wave and scattered waves:

F~x,zuv!5F0~x,zuv!1E
2`

` dq

2p
R~quk!eiqx1 ia0(q,v)z,

~5!

where the plane incident wave is given by

F0~x,zuv!5exp$ ikx2 ia0~k,v!z% ~6!

andR(quk) is thescattering amplitude. In the above expres
sion, we have defineda0(q,v)5A(v/c)22q2@Rea0(q,v)
.0,Ima0(q,v).0#. Furthermore, the momentum variabl
q andk are in the radiative region related, respectively, to
scattering and incident angle byq5(v/c)sinu and k
5(v/c)sinu0, so thata0(q,v)5(v/c)cosu and a0(k,v)
5(v/c)cosu0.

The mean differential reflection coefficient~DRC! also
known as the mean scattering cross section, which is an
perimentally accessible quantity, and defined as the frac
of the total, time-averaged, incident energy flux scatte
into the angular interval (u,u1du), is related to this quan
tity by the following expression@22#:

K ]R

]u L 5
1

L

v

2pc

cos2u

cosu0
^ zR~quk!z2&. ~7!

Here L denotes the length of the self-affine profile functi
as measured along thex direction, and the other quantitie

FIG. 1. Sketch of the scattering geometry.
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have been defined earlier. The angular brackets denot
ensemble average over the surface profilesz(x), and the mo-
mentum variables are understood to be related to the an
u0 andu according to the expressions given above.

We now use the Kirchhoff approximation, which consis
of locally replacing the surface by its tangential plane, a
thereafter using the~local! Fresnel reflection coefficient fo
the local incident angle to obtain the scattered field. Not
here that dealing with a surface whose scaling invaria
range is bounded by a lower cutoffj2 does ensure that th
tangential plane is well defined in every point. The scatter
amplitude is then@22#

R~quk!5
2 i

2a0~q,v!
E

2L/2

L/2

dx e2 iqx2 ia0(q,v)z(x)N~xuv!,

~8!

where N(xuv) is a source function defined byN(xuv)
52]nF0(x,zuv)uz5z(x) , with the~unnormalized! normal de-
rivative given by]n52z8(x)]x1]z . The ensemble averag
then gives

K ]R

]u L 5
v

2pc

1

cosu0
S cos@~u1u0!/2#

cos@~u2u0!/2# D
2

3E
2L/2

L/2

dv expH i
v

c
~sinu2sinu0!vJ V~v !,

~9!

where

V~v !5 K expH 2 i
v

c
@cosu1cosu0#Dz~v !J L , ~10!

with Dz(v)5z(x)2z(x1v). Note that the statistical prop
erties of the profile function,z(x), enter Eq.~9! only through
V(v). For a Gaussian self-affine surface, one gets

V~v !5E
2`

`

dzexpH 2 i
v

c
~cosu1cosu0!zJ p~z;v !

5expH 2S v

c

cosu1cosu0

A2
l12HvHD 2J . ~11!

By a simple change of variable in Eq.~9! and letting the
length of the profile extend to infinity, one finally obtains th
following expression for the mean differential reflection c
efficient:

K ]R

]u L 5
a2[(1/H)21]

A2 cosu0

cos
u1u0

2

cos3
u2u0

2

L2H
S A2 tan

u2u0

2

a(1/H21)
D ,

~12a!

where a5A2(v/c) l @cos(u1u0)/2)]@cos(u2u0)/2)], and
La(x) is the centered symmetrical Le´vy stable distribution of
exponenta defined as
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La~x!5
1

2pE2`

`

dk eikxe2ukua. ~12b!

Note that in the above expressions, the wavelengthl only
comes into play through the combination (l/l)12(1/H), which
appears both in the prefactor and in the argument of the L´vy
distribution. This quantity can be geometrically regarded
s(l)1/H, wheres(l)5( l/l)12H is the typical slope of the
surface over a wavelength. The behavior of the scatte
intensity is thus entirely determined by this typical slo
s(l) and the roughness exponentH.

Taking advantage of the asymptotic expansion of
Lévy distribution around zero@23#, we find that the ampli-
tude of the specular peak scales as

K ]R

]u
L U

u5u0

.

GS 1

2H
D

2A2pHS 2A2p
l

l
cosu0D (1/H)21 ~13!

and the half-width scales@assuming (v/c) l cosu0!1# as

w.2

AGS 1

2H
D

AGS 3

2H
D S

2A2p
l

l
cosu0D (1/H)21

. ~14!

It is interesting that these nontrivial scaling results can
be retrieved via simple dimensional arguments. Let us ex
ine the intensity scattered in directionu; in a naive Huyghens
framework two different effects will compete to destroy t
coherence of two source points on the surface:~i! the angular
difference separatingu from the specular direction,~ii ! the
roughness. The two source points will interfere coherentl
the distance between them is lower than the two len
scalesdang5l/p, wherep5tan@(u2u0)/2# is the slope of
the isophase plane anddrough is the typical length scale ove
which the height difference is of orderl. In case of a self-
affine surface,drough5l1/Hl121/H. Depending on the observa
tion angleu, the coherence will be controlled either bydrough
or by dang, which will correspond, respectively, to the pea
or the tail of the intensity distribution. The widthw of the
peak can then be defined as the transition between these
regions and will be such thatdrough.dang. This leads directly
to the scaling of Eq.~14!: w}( l/l)(1/H)21.

Using the expansion of the Le´vy distribution at infinity
@24#, the following expression for the diffuse intensity (u
Þu0) may be obtained:

K ]R

]u
L .

G~112H !sin~pH !

4p cosu0S cos
u1u0

2
D 2H23

S 4p
l

l
D 222H

Usin
u2u0

2
U112H .

~15!

Note that the mean DRC depends only on the roughn
exponent and on the topothesy parameterl. We stress that in
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this single-scattering approach, the relevant parameter fo
description of the roughness amplitude is the topothesyl and
not the root mean square~rms! roughness. Two surfaces ma
thus shear the same roughness exponent and rms roug
value and differ by their topothesy~this may occur if the
upper cutoff of the self-affine regime is different!; such sur-
faces would present different scattering properties.

In order to test the analytic result~12!, we have performed
direct numerical simulations for the mean differential refle
tion coefficient for ans-polarized plane incident wave o
wavelength l52pc/v5612.7 nm scattered from self
affine surfaces. Such simulations were carried out by the n
quite standard extinction theorem technique@22#, a numeri-
cal approach known to produce reliable results. In order
calculate the mean differential reflection coefficient, an e

FIG. 2. The mean differential reflection coefficient for inciden
anglesu050° andu0550° and a wavelengthl5612.7 nm as ob-
tained from Eq.~12! ~dashed lines! and by direct numerical simu
lations ~solid lines!. The surfaces each of lengthL5100l had to-
pothesyl51024l and a roughness exponentH50.7. The height
standard deviation as measured over the whole surface length
s(L)51.6l51 mm. The simulation results were averaged ov
Nz51000 surface realizations.

FIG. 3. Direct numerical simulation results for the mean DR
for surfaces ofl/l51026,1025,1024,1023, and 1022 and an inci-
dent angleu0550°. The inset shows the bare data; in resca
coordinates all data tend to collapse on a Le´vy distribution of ex-
ponent 2H ~bold line!.
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PRE 61 5917WAVE SCATTERING FROM SELF-AFFINE SURFACES
semble of Gaussian self-affine surfaces, all characterize
the same roughness exponent,H, and topothesy,l, was gen-
erated by the Fourier filtering technique@22#, for which the
results for^]R/]u& were averaged. The number of samp
used in these averages wasNz51000. For each surface th
length wasL5100l and the spatial discretization length w
Dx.l/10. For all numerical results to be presented, ene
conservation was checked and found to be satisfied withi
least 0.1% for all incident angles considered. Furthermo
the error due to the use of a finite numbers of samples
below 1%.

In Fig. 2 we present the numerical simulation resu
~solid lines! for the mean DRC fors-polarized light incident
at the anglesu050° andu0550° and scattered from a pe
fectly conducting, Gaussian self-affine surface of Hurst
ponentH50.7 and topothesy 1024l. These results are com
pared to the analytic predictions obtained from Eq.~12!
~dashed lines!. An excellent agreement between the analy
cal and numerical results is found for scattering angles
roughly 50°, or less, from the specular direction. For scat
ing angles outside this range, the analytical prediction
overestimated compared to the simulation results. This o
estimation for grazing scattering angles is the expected
nature of multiscattering and shadowing effects. Note t
the surfaces considered above (l51024l) are rather rough;
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calculated over the whole surface, the rms roughn
amounts tos(L)51.45l.

In Fig. 3 we have gathered numerical results for the me
DRC obtained for an incidence angleu0550° for surfaces of
~topothesy!/~wavelength! l/l51026,1025,1024,1023, and
1022. The bare data are shown in the inset. After rescal
the coordinates, we observe that the data tend to collaps
a master curve which from Eq.~12! is a Lévy distribution for
all values ofl/l. Deviations from the Le´vy distribution occur
for low incidence or scattering angles when multiple scatt
ing and shadowing effects are expected to become impor
They are beyond the scope of our theoretical analysis.

We considered the scattering of a wave by a perfec
conducting self-affine rough surface. Within the Kirchho
approximation, we could compute analytically the angu
distribution of the scattered intensity. We found an excell
agreement with direct numerical simulation obtained w
rms roughness amplitudes of the order of several wa
lengths.
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