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Wave scattering from self-affine surfaces

Ingve Simonsen;? Damien Vandembrouctiand Stphane Rouk
! aboratoire CNRS/Saint-Gobain “Surface du Verre et Interfaces,” 93303 Aubervilliers Cedex, France
2Department of Physics, The Norwegian University of Science and Technology, N-7491 Trondheim, Norway
(Received 8 July 1999; revised manuscript received 6 October)1999

Electromagnetic wave scattering from a perfectly reflecting self-affine surface is considered. Within the
framework of the Kirchhoff approximation, we show that the scattering cross section can be exactly written as
a function of the scattering angle via a centered symmetrigy Ldistribution for the general roughness
amplitude, Hurst exponent and wavelength of the incident wave. Our prediction is supported by direct numeri-
cal simulations.

PACS numbsd(s): 42.25.Fx, 05.45.Df, 68.35.Ct

Wave scattering from rough surfaces has been studied fawho predicted a Ley distribution for the intensity of a wave
a long time[1,2] (see alsd3-5] for recent reviews of the scattered from a self-affine random phase screen. In the fol-
subjecy with potential applications in remote sensing, lowing, we briefly recall the main properties of self-affine
acoustical/optical/radar detection or design of surfaces witisurfaces, give a complete analytic expression of the scattered
specified scattering properties, etc. The theoretical predictiotitensity in the framework of the Kirchhoff approximation,
of the angular distribution of the scattered intensity requireind present direct numerical simulation that supports our
a proper statistical description of the surface roughness. Agredictions.
this stage it is classical to assume that the statistics of the A surface is self-affine between the scafesand¢ .. if it
height and its correlation function are Gaussian. This astemains(either exactly or statisticallyinvariant in this re-
sumption allows us to build analytical expressions and tddion under transformations of the form
compare them with experimental or numerical results. H

Since the pioneering work of Mandelbrf], however, (X,¥,2) = (AX,AY,\"2). ()
scale invariance has emerged as a relevant tool to describe

the geometry of real “disordered” objects. In the case of "€ €xponent is usually called the roughness or Hurst

surfaces, the scale invariance takes the form of self-affinityeXPonent. Restricting ourselves to profiles, a statistical trans-

Such surfaces remain invariant under dilation of different@tion of the previous statement is that the probability
ratios over the horizontal and the vertical directions. ThisP(AZ;Ax) of having ahe|ghtd|fferAechAzoverthe distance
long-range correlated height distribution is characterized bydX Or its cumulativeP(Az;Ax) = [ 2, p(6z;Ax)d 6z is such

a roughness exponent, an amplitude parameter, and by tiiigat
lower and upper limits of the scaling invariance regiam

stead of a height standard deviation and a two-point correla-
tion function of finite width. It turns out that many real
surfaces can be described through this formalism. Surfaces
obtained from fracturé?7], growth, or deposition processes Simple algebra based on this scaling gives

[8] are classical examples. Similar results have been more

Eej:ently found for surfaces obtained from cold metal rolling o(Ax)=11"HAxH, 3

9].

Since an early paper examining the effect of scale invariyhere ¢-(Ax) is the standard deviation of the height differ-
ance in the context of scattering from rough surfddé, a  ences over a lengthx. Herel denotes a length scale, also
large amount of studies have been publlshe_d in various jouignown as theopothesy This quantity is defined by (1) =1,
nals(see, for example, Refgl1-19). Two main points mo- \yhich allows the geometrical interpretation of the topothesy

tivated most of these studig$) the effect of scale invariance 5g tne length scale over which the profile has a mean slope of
on the field scattered from the surface in comparison with theise The smallet. the flatter the profile appears on a mac-

more classical case of a finite width correlation lendth,  oscopic scale. In the case of a Gaussian height distribution,
the hope of directly measuring the “fractal” parameters of o probabilityp(Az; Ax) reads

the surface via an acoustical or optical experiment. In spite

of a large amount of work, very few analytical predictions 1 1 Az 2
can be found and conversely a large number of numerical  p(AzAX)= ——— F{— _<—)
simulations still lack a clear physical interpretation. One rea- V27t HAXH 2\ |1-HAxH
son for this could be an excessive focus on the “fractal di-

mension” (or the roughness expongmwith a disregard for The self-affine profile is thus fully characterized by its expo-
the other parameterghe limits of the scale invariance re- nent H, its topothesy parametdr and the bounds of the
gime and the amplitude parametei noteworthy exception self-affine regime£_ and¢, . Note thatl can be outside the
is, however, due to Jakeman and his collaboraf@fs21], range[&_ ;€. ].

Az
P(AZ;AX)='P()\HAZ;)\AX)=CD<—). 2)
AxH

.4
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s have been defined earlier. The angular brackets denote an
\ / ensemble average over the surface profileg, and the mo-
mentum variables are understood to be related to the angles
0 0y and 6 according to the expressions given above.
3 P We now use the Kirchhoff approximation, which consists
2={(x) ’/\ /\‘ e=1 of locally rep'lacing the surface by its tangential _pl_ane, and
P /\ X thereafter using thélocal) Fresnel reflection coefficient for
g the local incident angle to obtain the scattered field. Notice
N ——® w here that dealing with a surface whose scaling invariance
range is bounded by a lower cutaff does ensure that the

tangential plane is well defined in every point. The scattering
FIG. 1. Sketch of the scattering geometry. amplitude is ther22]

In the following, we consider the scattering spolarized —i L/2 -
electromagnetic waves from a one-dimensional, random, R(q|k)= Z—J dx g 10 1a0(@@) 0 A x| ),
self-affine surface. This surface, of Hurst exponinis de- @09, @) ) -1z
noted byz={(x), and is assumed to be Gaussian self-affine.
We will further assume that the lower limit of the self-affine
regimeé_ is smaller than the wavelength, of the incident
wave. The scattering geometry considered is depicted in Fi
1. The incident plane is assumed to be xtzeplane, and the
rough surface, which is perfectly conducting, is illuminated
from the vacuum side by a plane wave of pulsatien <&R> © 1 (cos{(6+ 00)/2])2

8

where NV(x|w) is a source function defined by{(x|w)
=20,Po(X,2|®)|,= ¢(x » With the (unnormalizedinormal de-
Yivative given byd,= — ' (X)dy+ d,. The ensemble average
then gives

=2mc/\, wherec is the wave velocity. We denote the inci- —

dent and scattering angle I8y and 6, respectively, and they 990 cog (60— 6o)/2]

are defined positive according to the convention indicated in L2
|

~ 2mc cosb,

Fig. 1. In the above scattering geometry, there is no depolar-
ization, and the electromagnetic field is represented by the
single nonvanishing component of the electric field (9)
®(x,z]w)=Ey(x,z|w), which should satisfy the(scalay

Helmholtz equation with vanishing boundary condition onwhere

z={(x) and outgoing wave condition at infinity. In the far-

dv exp{ i 2(sin 0—sin HO)UJQ(U),
—L2 c

field region, above the surface, the field can be represented as o
the sum of an incident wave and scattered waves: Q(v)=| exp —i[cosf+cosbp]Al(v) (), (10
D(x,z|w)=Do(X, 2| @)+ fx g—qR(QIk)eiqx““O(q"”)z, with AZ(v)=¢(x)— {(x+v). Note that the statistical prop-
— &

erties of the profile functiorng(x), enter Eq(9) only through
©) Q(v). For a Gaussian self-affine surface, one gets

where the plane incident wave is given by

e . w )
®o(x,2] @) = explikx— i arg(k, )2} ©) Q(v)=Jxdzexp[—lg(cosaﬂtcosao)z] p(z;v)
andR(q|k) is thescattering amplitudeln the above expres- 2
sion, we have defined(q,») = \(w/c)?— g% Reay(q,w) —expl — e COSH+COS‘90|17HUH ' (11)
>0,Im ay(q,w)>0]. Furthermore, the momentum variables c J2

g andk are in the radiative region related, respectively, to the

scattering and incident angle byg=(w/c)sind and k By a simple change of variable in E¢Q) and letting the

=(w/c)sinf,, so thatagy(q,w)=(w/c)cossd and agy(k,w) length of the profile extend to infinity, one finally obtains the

= (w/c)cosb. following expression for the mean differential reflection co-
The mean differential reflection coefficie@RC) also  efficient:

known as the mean scattering cross section, which is an ex-

perimentally accessible quantity, and defined as the fraction 0+ 0, 0— 0,
of the total, time-averaged, incident energy flux scattered | p\  g-l(WH)-1] COST V2 tan 5
into the angular interval 4, 0+ d#), is related to this quan- <—> = Lon\ — | .
tity by the following expressiof22]: 90 V2 cost, Cos?@ =
R\ 1 o cosh (129
_— )= _ 2
<M> L 2w cosag (R Y

where a=2(w/c)l[cos@+ 6y)/2)][cosE—6y)/2)], and
HereL denotes the length of the self-affine profile function £,(X) is the centered symmetrical iy stable distribution of
as measured along thedirection, and the other quantities exponenta defined as
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L (x):i Tk dkxe ke, (12b)
@ 27 ) o

Note that in the above expressions, the wavelengibnly

comes into play through the combinatidin)*~ " which 10°
appears both in the prefactor and in the argument of tivy Le =
distribution. This quantity can be geometrically regarded as <,
s\, wheres(\)=(1/\)*"" is the typical slope of the %
surface over a wavelength. The behavior of the scattered 2

) o ) . . ; 10°
intensity is thus entirely determined by this typical slope
s(\) and the roughness exponétht 5
Taking advantage of the asymptotic expansion of the 10 —== Analytic
Lévy distribution around zer$23], we find that the ampli- — Simulations

tude of the specular peak scales as 10

5

-90 —60 =30 0 30 60 90
1 0 [deg]

rl—
2H

FIG. 2. The mean differential reflection coefficient for incidence
(13 anglesf,=0° andf,=50° and a wavelength=612.7 nm as ob-

0=0 | (H)-1 tained from Eq.12) (dashed linesand by direct numerical simu-
0 2\EWH 2\/577;(30560 lations (solid lineg. The surfaces each of length= 100\ had to-
pothesyl=10"“\ and a roughness exponet=0.7. The height
and the half-width scald@ssuming &/c)l cosfy<1] as standard deviation as measured over the whole surface length was
o(L)=1.6A=1 um. The simulation results were averaged over
1 N,= 1000 surface realizations.
V F( ZH) | (1H)-1 this single-scattering approach, the relevant parameter for the
W:Z—( 2\/577—00500) (14 description of the roughness amplitude is the topothesyd
3 A not the root mean squafams) roughness. Two surfaces may
r 2H thus shear the same roughness exponent and rms roughness

value and differ by their topothesfthis may occur if the

It is interesting that these nontrivial scaling results can alluPper cutoff of the self-affine regime is differgnsuch sur-
be retrieved via simple dimensional arguments. Let us exaniaces would present different scattering properties.
ine the intensity scattered in directionin a naive Huyghens ~_ In order to test the analytic result2), we have performed
framework two different effects will compete to destroy the Q|rect numgrmal simulations for the mean d|.fferent|al reflec-
coherence of two source points on the surfédehe angular ~ tion coefficient for ans-polarized plane incident wave of
difference separating from the specular directior(ji) the =~ Wavelength A=2mc/w=612.7 nm scattered from self-
roughness. The two source points will interfere coherently ifaffine surfaces. Such simulations were carried out by the now
the distance between them is lower than the two lengtiiUite standard extinction theorem t(_achnlc[Qé], a numeri-
scalesd,ng=\/p, where p=tar{ (6— 6o)/2] is the slope of cal approach known to prod_uce rellat_)Ie result_s._ In order to
the isophase plane amth, g, is the typical length scale over calculate the mean differential reflection coefficient, an en-
which the height difference is of ordar. In case of a self-
affine surfaced,qg=A""1*"*M. Depending on the observa-
tion angled, the coherence will be controlled either By,,4,
or by dang, Which will correspond, respectively, to the peak
or the tail of the intensity distribution. The widtl of the
peak can then be defined as the transition between these two
regions and will be such tha,q=d.ng. This leads directly
to the scaling of Eq(14): wee (I/\) M ~1,

Using the expansion of the kg distribution at infinity
[24], the following expression for the diffuse intensity (

a(i.8)""" cos™'[(6+8,)12]cos’[(6-6,)/2] (IR /0O)
=

# 6y) may be obtained: 10 b
2 oH 10 -90 —60 —;0 (I) 3‘0 6‘0 %
4 ! 10° N . .
) o — —2 —1 0 1 2 3
IR ['(1+2H)sin(7H) A 10 10 10 10 10 10
)= 3 Ton ltan{(6-6,)/2]\/a(l/).6)
a0 0+ 6\ 0—0q
447 COSHy| COS sin . . . .
O( FIG. 3. Direct numerical simulation results for the mean DRC

(15  for surfaces of/A=10"°10"°10410"2 and 102 and an inci-
dent anglef,=50°. The inset shows the bare data; in rescaled
Note that the mean DRC depends only on the roughnessordinates all data tend to collapse on ‘ay elistribution of ex-
exponent and on the topothesy paramétdVe stress that in - ponent 24 (bold line).
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semble of Gaussian self-affine surfaces, all characterized bsalculated over the whole surface, the rms roughness
the same roughness exponet,and topothesyl, was gen- amounts toor(L)=1.45\.

erated by the Fourier filtering techniqi22], for which the In Fig. 3 we have gathered numerical results for the mean
results for(JR/J6) were averaged. The number of samplesDRC obtained for an incidence anglg=50° for surfaces of
used in these averages whls=1000. For each surface the (topothesy/(wavelength 1/ A=10"°10"°10"%10"% and
length wad. = 100\ and the spatial discretization length was 10~ “. The bare data are shown in the inset. After rescaling
Ax=\/10. For all numerical results to be presented, energyn€ coordinates, we observe that the data tend to collapse on

conservation was checked and found to be satisfied within & Master curve which from EqL2) is a Levy distribution for

least 0.1% for all incident angles considered. Furthermore!l values ofi/x. Deviations from the Ley distribution occur

the error due to the use of a finite numbers of samples wal@" 10W incidence or scattering angles when multiple scatter-
below 1%. ing and shadowing effects are expected to become important.

. . . . They are beyond the scope of our theoretical analysis.

In F_|g. 2 we present the ”“me”c"j?' S|m.ulat|.on. results We considered the scattering of a wave by a perfectly
(solid lines for the mean DRC fos-polarized light incident 0 cting self-affine rough surface. Within the Kirchhoff
at the anglegl,=0° and ,="50" and scattered from a per- ,5r6ximation, we could compute analytically the angular
fectly conducting, Gaussian self-affine surface of Hurst exyjistribution of the scattered intensity. We found an excellent
ponentH =0.7 and topothesy IT#\. These results are com-

: ) - ; agreement with direct numerical simulation obtained with
pared to the analytic predictions obtained from E#j2)

) . rms roughness amplitudes of the order of several wave-
(dashed lings An excellent agreement between the a”alyt"lengths.

cal and numerical results is found for scattering angles of

roughly 50°, or less, from the specular direction. For scatter- The authors would like to thank Claude Boccara, Jean-
ing angles outside this range, the analytical prediction islacques Greffet, Tamara Leskova, and Alexei A. Maradudin
overestimated compared to the simulation results. This overfor useful comments about this work. I.S. would like to thank
estimation for grazing scattering angles is the expected sighe Research Council of NorwdfZontract No. 32690/213
nature of multiscattering and shadowing effects. Note thaNorsk Hydro ASA, Total Norge ASA, and the CNRS for
the surfaces considered above:= (0 “\) are rather rough; financial support.
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